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ABSTRACT

We introduce the novel problem of inter-robot transfer learn-
ing for perceptual classification of objects, where multiple
heterogeneous robots communicate and transfer learned ob-
ject models consisting of a fusion of multiple object prop-
erties. Unlike traditional transfer learning, there can be
severe differences in the data distributions, resulting from
differences in sensing, sensory processing, or even represen-
tations, that each robot uses to learn. Furthermore, only
some properties may overlap between the two robots. We
show that in such cases, the abstraction of raw sensory data
into an intermediate representation can be used not only to
aid learning, but also the transfer of knowledge. Further, we
utilize statistical metrics, learned during an interactive pro-
cess where the robots jointly explore the environment, to de-
termine which underlying properties are shared between the
robots. We demonstrate results in a visual classification task
where objects are represented via a combination of proper-
ties derived from different modalities: color, texture, shape,
and size. Using our methods, two heterogeneous robots uti-
lizing different sensors and representations are able to suc-
cessfully transfer support vector machine (SVM) classifiers
among each other, resulting in speedups during learning.

Categories and Subject Descriptors

1.2.9 [Artificial Intelligence]: Robotics; 1.2.10 [Vision
and Scene Understanding]: Perceptual Reasoning; 1.2.11
[Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms

Keywords

Inter-Robot Transfer, Transfer Learning, Multi-Robot Sys-
tems

1. INTRODUCTION

As autonomous robots become increasingly common, it
is likely that there will be multiple robots that each learn
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through experience; that is, via embodied interaction with
the world. This type of grounded learning, however, ignores
social aspects of learning. With multiple robots, it is crucial
for the robots to be able to share knowledge either through
explicit communication or implicit means such as imitation.
Such knowledge sharing can speed up learning significantly
and can reduce the need for costly human teaching.

Several problems can prohibit effective sharing of knowl-
edge, however. Knowledge learned via exploration of the
world is often embodiment-specific, that is unique to the
particular sensing capabilities of the robot. It is quite com-
mon to have some degree of heterogeneity among robots,
however, and there can be slight perceptual differences even
among two robots of the same model. For example, the cam-
era color models may differ slightly. It is an even greater
problem when different types of robots are used. Currently,
there is a plethora of robotic systems in use in home en-
vironments (e.g. the Roomba and lawn mowing robots),
research labs, and in various domains where task allocation
to differing robots is necessary.

In this paper, we look at this issue from a transfer learn-
ing perspective. Transfer learning is a method that has been
recently applied in the computer vision, machine learning,
and reinforcement learning fields. From a machine learning
perspective, transfer learning is a subfield that attempts to
speed up learning by transferring previously learned knowl-
edge to new domains or categories (e.g. [13], see [12] for a
survey), where the distributions of the features differ in the
new domain or category. Unlike these fields, however, little
attention has been paid in robotics to the transfer of learned
representations across multiple robots.

In order to apply these techniques to robots, there are
some unique challenges that must be addressed as well as
unique opportunities that can be leveraged. For example,
there can be severe differences in the distributions of data
sensed by heterogeneous robots, resulting from differences
in sensing, sensory processing, or even representations, that
each robot uses to learn. Furthermore, there may be miss-
ing properties with only some of them overlapping in the
two robots. Despite these challenges, the fact that robots are
embodied and can explore their environment jointly presents
opportunities for finding properties that robots have in com-
mon, as will be shown. We hope that this paper will raise the
awareness of the advantages of inter-robot transfer learning
in the robotics community, as well as spur new robotics-
specific formulations of the problem that can be tackled by
the machine learning and computer vision communities.



In order to deal with potential sensor and representation
differences, we abstract raw sensory data into natural object
properties such as color or texture categories. Each robot
can then learn these categories, and we show that such ab-
stractions aid in learning to classify objects. In addition,
common properties that are shared between the robots can
be found by allowing the two robots to interact jointly in
an environment. The resulting property mappings can then
be used to transfer learned classifiers between robots, and
again we show empirically that the property abstractions
aid transfer, especially when properties are grounded differ-
ently in each robot due to processing or representation dif-
ferences. We demonstrate empirical evidence for our claims
using two heterogeneous robots (a Mobile Robots Amigobot
and Pioneer 2DX) and four types of object properties: color,
texture, shape, and size. We show that classifiers for thirty
four real-world objects can be successfully transferred be-
tween the robots despite their differences.

2. RELATED WORK

Transfer learning has recently flourished in multiple fields
including computer vision (e.g. [3, 16]), machine learning
[12], and reinforcement learning [15]. In computer vision,
there has recently been a heavy focus on cross domain and
cross category transfer of knowledge in the form of, for ex-
ample, priors in a probabilistic framework. These trans-
fers occur across different categories, as opposed to across
sources of data in the case of robots.

Despite these advances in learning, there has been little
work focusing on transfer learning for robotics. Transfer in
reinforcement learning has focused on differing state and ac-
tion spaces [15]. Transfer in perceptual classification and
learning for robotics, on the other hand, is almost non-
existent. Some computer vision results, such as those of
[11], have used robots with multiple cameras and transferred
SVM classifiers as in our work. However, in that case the
cameras were of an identical model, hence differing from our
focus on heterogeneity. We hope that this paper results in
more focus on the issue of transfer learning in the robotics
community, in addition to bringing to light special require-
ments that arise in transfer learning for robotics so that they
may be explored in machine learning and other similar fields.
For example, by virtue of the fact that they are embodied
robots in the real world, joint interaction in the world can
be used to learn differences between robots, as will be shown
in this paper.

The key issues and motivation in this paper are also re-
lated to social symbol grounding, that is finding common
symbols for similar concepts across a population of agents.
This is related to language formation and has been studied
extensively in linguistics and evolutionary or artificial life
[17, 14]. For example, work done by Luc Steels and his col-
leagues in the area of shared vocabulary development used
shared attention to synchronize two robot’s symbols [14].
This is a similar concept to ours, although they did not
explicitly deal with the issue of robot heterogeneity where
robots may have different feature spaces.

Another example of this in robotics includes work by Jung
and Zelinsky, who studied two robots that perform the same
task (vacuuming) but had different capabilities; one robot
swept small pieces and reached into corners, while the other
could only vacuum the larger piles and could not reach cor-
ners [7]. In that case, a shared ontology was developed by es-
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tablishing a physically shared context during learning: The
two robots followed each other around the room and agreed
on symbols for specific locations in the environment. In a
similar vein, Billard and Dautenhahn have looked at a situ-
ation involving two homogeneous robots where one teacher
attempts to share its symbols with another robot via imi-
tation, namely following [1]. In this paper, the robots can
learn by themselves separately, and then utilize joint inter-
action only to facilitate transfer.

3. A FRAMEWORK TO FACILITATE
TRANSFER OF CONCEPTS

We will now describe the proposed framework designed to
facilitate both learning and transfer of learned object mod-
els between two robots. The key idea of this framework is
that an intermediate representation is built from raw sen-
sory data. The importance of abstraction into intermediate
representations for learning have been recognized in com-
puter vision as well as machine learning. In this paper, we
claim and empirically confirm that this is also useful for fa-
cilitating knowledge transfer between heterogeneous robots.

The intuition is that a small number of properties can be
used to represent an order-of-magnitude larger number of
concepts. Since there will be only a few number of properties
to be mapped between robots, compared to the number of
concepts, less effort is needed for transfer to occur. Note that
this abstraction also allows the robots to represent the same
properties using their own sensing, and can even use different
representations (for example, an HSV color space versus an
RGB color space) or different modalities (for example, the
width of an object can be sensed via laser or stereo camera).
We will provide evidence for the claim that this aids both
learning as well as transfer, especially when the underlying
representations used by the robots differ, in the next section.

In order to determine how to abstract sensory data, we
take inspiration from Gdrdenfors’ conceptual spaces [5], a
cognitively-inspired multi-level representation that uses ge-
ometric spaces to represent concepts (in our case objects).
The most basic primitive of the representation is a dimen-
sion which takes values from a specific range of possible val-
ues. For example, the hue of an object can be specified as
an angle in the range [0, 1]. The values of these dimensions
come from perceptual features processed from sensor data.
For example, a camera sensor measures physical properties
of the world (light), converting them into a digital represen-
tation consisting of multiple pixels in the form of an RGB
space. A perceptual feature detector can convert regions of
the image into an HSV space, and the H (hue) value can
make up a dimension. The feature detector returns a set of
these, one for each region of the image that it determines
is salient. (Note that in this paper, we will use the term
features interchangeably with dimensions.)

Gardenfors posits that there are integral dimensions that
cannot be separated in a perceptual sense. For example, the
HSV color space can be argued to consist of three integral
dimensions. Another example used is pitch and volume that
is perceived by the auditory system. A set of such integral
dimensions is referred to as a domain. A domain defines
a space that consists of all possible values of the integral
dimensions. For example, the HSV color space is a domain
consisting of three dimensions. It is useful to abstract and
divide the space into specific regions, which define a prop-



erty. These properties carve out natural regions of the do-
main borne out of structure in data obtained from the world.
For example, “blue“ can be a property that corresponds to
some region of the color space. Note that different dimen-
sions can result in similar properties of objects; for example,
similar color property can be learned using both HSV and
RGB domains. The regions can be arbitrarily shaped, al-
though Gdrdenfors defines what he calls natural properties
consisting of regions with certain characteristics such as con-
vexity. This property is preserved in our work and is impor-
tant in order to ensure consistent distance measurements.

Now suppose that there are two robots, robot A and robot
B. These robots each have a set of features (or dimensions).
There may or may not be an overlap in these features, and
even if there is the data resulting from the sensors may dif-
fer in distributions anyways (e.g. RGB spaces will differ due
to differences in the color models of different cameras; see
[8] for experiments demonstrating this.) We claim, and will
show evidence, that these raw features pose difficulty when
transferred across heterogeneous robots. Instead, each robot
individually learns a set of properties P* = {pi', p%, ..., pi}
and PZ = {pP pZ .. pB}. The properties can be learned
separately by each robot, and as mentioned similar prop-
erties can be learned even if they differ in their underlying
representations or domains. We will discuss the particular
representation and learning algorithms we use in our partic-
ular implementation of the framework in the next section.
Since these are natural properties of objects, such as color or
texture categories, there will be some commonalities in the
properties learned by the two robots. This is especially true
if they are supervised by humans, as they are in this paper.
The point is to leverage as much similarity as possible when
transferring object models.

A particular object can have real-valued membership val-
ues in these properties, as we will later discuss. In order to
learn objects or concepts, then, we can feed property mem-
berships into a binary classifier that determines whether the
object belongs to a particular class. Again, supervised learn-
ing can be used, where instances of an object are given, prop-
erty memberships are extracted, and these are used to train
the classifier. In order to transfer these classifiers, it becomes
necessary to determine which properties on robot A map
onto properties on robot B. As detailed in the subsections
below, we use joint interaction where the robots achieve a
shared context (that is, view a similar scene with the same
objects in them). These instances, where both robots sense
the same objects, are used to build statistical metrics that
can be used to determine whether two properties (one from
each robot) correspond to the same property in the world.
Since some properties may not map, it is important that
the classifier be able to handle missing attributes. It is also
necessary for the classifier to support incremental learning,
so that after receiving a classifier from another robot, the
receiving robot can continue learning.

In summary, each robot begins by learning properties us-
ing labeled data. These properties are then combined in a
classifier to learn objects, again using labeled data. After
this learning period, where each robot learns individually,
the robots may transfer knowledge to each other. Before
transfer can occur, however, the robots jointly interact in
the world to map their intermediate property representa-
tions. After this mapping period, all of the concepts on one
robot can be transferred to the other. We will now detail
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the specific algorithms and representations that we use to
learn and map properties.

3.1 Learning Abstracted Object Properties

In this paper, we represent properties as Gaussian Mixture
Models (GMMs) and learn them via the Expectation Max-
imization algorithm, although only one Gaussian is used in
this case to preserve convexity properties suggested by con-
ceptual spaces [5]. Properties are learned using a supervised
learning framework where the properties are empirically de-
termined a-priori and hand-labeled instances are provided
by picking out segments from a graph-cut based automatic
segmentation algorithm [4]. Future work will look at unsu-
pervised learning of intermediate properties.

In order to learn
the representation for
object properties, we
will scaffold the robot’s
learning by first pro-
viding it with multi-
ple instances of data
that contain a prop-
erty. Each scene con-
tains a target object
and results in a set
of points calculated
from the output of the
robot’s low-level per-
ceptual feature detec-
tors: color, texture,
size, and shape. For
each property p;, we use a Gaussian Mixture Model to char-
acterize the regions, denoted as GG;. Specifically, each prop-
erty can be modeled as:

P(pil0) = w; P(piluy, 05) 1)

where w; is known as t]he mixing proportion and @ is a
set containing all of the mixing proportions and model pa-
rameters (mean p and standard deviation o). An Expec-
tation Maximization (EM) algorithm is used to determine
these parameters [2]. Once models are learned, they are
used to determine the membership of an instance in a prop-
erty. Specifically, features (e.g. RGB values) are obtained
from sensors and result in points in a given space (e.g. the
RGB color space). The membership of this point in prop-
erty p is the Gaussian distance function s(7, p) to the nearest
property cluster. This measures the likelihood of the point
coming from a particular Gaussian. Fig. 1 shows the color
properties in an RGB space for the Amigobot.

In order to classify objects, supervised images with object
segments are provided. For each instance, property member-
ships are calculated and these memberships for all properties
are input into a support vector machine classifier [6].

Figure 1: Six color proper-
ties, represented as GMMs,
after training with multiple
objects.

3.2 Mapping Abstract Properties

As mentioned properties are regions in domains, in our
case represented as Gaussian clusters. The same property
can be represented in two different robots as clusters with
different characteristics (for example, different standard de-
viations) or even domains from different sensors (for exam-
ple, the width of an object as detected by a camera or laser).
Given these clusterings of a domain, the problem is to find
associations between clusters from each robot. In order to



do this, we use instances from each robot while viewing the
same scene and compare properties that they see. In this
paper, this is done manually and in a looser sense; man-
ual selection of images is performed such that both robots
see the same object, although not necessarily from the same
perspective. We also gathered a smaller set of instances by
teleoperating the robots to face the same object. In prior
work [10], we have explored behaviors for this in simulation,
such as one robot following the other and parking next to
it or pointing to objects from afar. Future work will in-
clude developing a localization mechanism, which is needed
to perform these behaviors on real robots. Given a scene,
each robot processes its sensory data to produce a set of
property memberships for all properties. For each pair of
properties (one from each robot), statistics described below
are maintained in order to determine whether they represent
similar physical attributes.

We map individual clusters to each other by building con-
fusion matrices between the properties (see [8] for a full de-
scription). Specifically, we utilize the confusion matrix to
determine pairs of properties that may potentially represent
the same physical property. The rows of the matrix corre-
spond to the properties of one robot, while the columns cor-
respond to the properties of the other robot. Values within
the matrix represent the correlation between corresponding
properties (one from each robot). Suppose that there are
two clusterings G;‘ and G¥ defining regions corresponding to
properties pf and pP for robot A and B, respectively. Also,
each clustering for robot A and B has nj‘ and n¥? clusters,
respectively. Finally, suppose that we have a set of instances
I from each robot (obtained using its own sensing) with the
highest property membership value corresponding to prop-
erty p;'. Element (4,j) of the confusion matrix PC*% is
then set to:

I . . A . B
pCAB — mm(s(%pj ),5(3, 0% )) 9
:h) Z 56,7 (2)

Here, s(i,p) is the Gaussian membership function of in-
stance ¢ in property p. The min function is used to rep-
resent the intersection of property memberships, as is used
commonly in fuzzy sets. For each property of a robot, the
highest values in the corresponding property’s row or col-
umn will be taken and it will be considered potentially cor-
responding to the respective property of the other robot. A
threshold may be placed on this as well, although we do not
do so in this paper.

4. ROBOT EXPERIMENTS

We have conducted experiments in order to verify our
claims that the intermediate abstractions improve learning,
that they can be mapped successfully between robots via
sensing from a shared context, and that they facilitate trans-
fer, especially in the case where the underlying represen-
tations differ in the two robots. For all experiments, two
robots were used: A Mobile Robots Amigobot with a wire-
less camera and a Pioneer 2DX robot with a Quickcam Ex-
press web camera (shown in Figure 3). The Amigobot used
640x480 resolution images while the Pioneer used 320x240
resolution images, another source of heterogeneity. Unlike
the first robot, the Pioneer robot had a SICK laser range
finder as well, data from which was processed to extract
object shape (curvature) and size properties.
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Figure 2: Twelve of the thirty-four objects used.
Objects differed in color, texture, shape, and size.

Figure 3: Heterogeneous robots used for the exper-
iments. Left: Amigobot with a wireless camera.
Right: Pioneer 2DX robot with a Quickcam web
camera and a SICK laser range finder.

In order to train color, texture, shape, and size properties,
the robots were driven around a laboratory environment, re-
sulting in a large amount of stored sensor data. Thirty-four
realistic objects were used, twelve of which are shown in Fig.
2. Examples of objects included whiteboards, wood crates,
some robots (e.g. a different Amigobot as well as an iRobot
Create), trash cans, and so on. One hundred images of each
object were chosen, seventy of which were randomly chosen
for training and thirty for testing (note some object classes
had somewhat fewer testing instances). Anywhere from one
to six objects from the environment per category were cho-
sen for training of properties, some of which are shown in
Table 1. For each property, all that is given is the domain
to be trained, a set of data instances, and segments cho-
sen from the automatic segmentation of the target object.
The color space used for the properties included RGB and
HSV. For texture, an empirically-chosen Gabor filter was
used and the dimensions of the space consist of the mean
and standard deviation of its output. Shape, obtained from
range finders, consisted of a curvature metric along the ob-
ject. Object sizes were obtained by simple calculating the
3D points in which they lied and measuring the three dimen-
sional distance between the first point on the object and the
last. The camera and laser sensors were calibrated so that
points from the laser could be projected onto the image.

In some cases, these features (and therefore properties)
were missing if, for example, the object was not in full view
and the laser readings therefore did not cover the entire ob-
ject. In these cases, the features and property memberships
were considered missing; as mentioned, the ability to handle
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Figure 4: Results demonstrating the advantage of using abstracted properties as opposed to raw sensory data
when learning. The figure on the left shows the precision, while the figure on the right shows recall.

missing features is an important capability to enable transfer
learning of classifiers.

4.1 Learning Object Models

In order to learn object classes, we used a support vec-
tor machine classifier. In order to verify the claim that the
abstraction of sensory data aids learning, we used two condi-
tions. In the first condition, the property memberships for
the previously learned properties were used as attributes.
In the second condition, raw sensory data itself (e.g. RGB
values or the curvature metric) were used as attributes for
training. In later subsections, we also used a third condition
where raw sensory data was used, but the robots used dif-
ferent representations for color, namely one robot used an
RGB color space while the other used an HSV color space.
In order to gauge classification rates, both recall and preci-
sion are plotted. These are standard classification metrics,
where recall measures the number of true positives divided
by the number of positives in the test set, while precision
measures the number of true positives divided by the num-
ber of test set instances that were classified to be positive.

Figure 4 shows a comparison between the first two condi-
tions for both recall and precision. Results are plotted for
different number of training instances used. As can be seen,
our hypothesis that the abstraction of properties results in
higher learning curves is confirmed, showing that it is more
difficult to learn with raw sensory data. When all training
instances are used, recall rates are a little higher when using
raw sensory data (a difference of about 3.3) but this comes
at the expense of lower precision (a differences of about 7.9).
Furthermore, the learning curve is significantly higher when
using properties most of the time (and especially in the early
stages of learning), showing that it is more difficult to learn
with raw values.

4.2 Mapping Abstracted Properties

We now describe results for determining the property map-
pings between the robots. In order to learn the mappings,
the confusion matrix was learned via all test instances of the
thirty four objects. Hence, the shared context in this case
was manually guaranteed (i.e. images from each robot sens-
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ing the same object were chosen). For each instance, each
robot picked properties that were high for that instance, and
added to the average the ratio of the other robot’s property
membership to its own. Figure 6 show a gray-scale rep-
resentation of the learned confusion matrix, where lighter
values correspond to higher values (i.e. more highly corre-
lated properties). The diagonal represents the ground truth
mappings (since we trained the properties in the same or-
der) and are highlighted. Note that there are fewer rows
than columns since four of the properties do not exist on
the first robot. By taking the maximal values in each row,
eight of ten properties were mapped correctly.

Note that in previous results, we have successfully mapped
properties with perfect accuracy [8, 9]. In this case, the
texture properties were highly correlated across all objects,
meaning that the properties were not independent. This
shows that such dependencies can cause errors in the prop-
erty mappings, an important fact for future work when we
will work on unsupervised learning of the properties since
some unsupervised algorithms do not guarantee this. Fig-
ure 5 shows the number of correct mappings, averaged across
ten randomized validation runs, as the number of testing
instances increases. We also tested this with sixty four in-
stances where the two robots were teleoperated to view the
same object. In that case, five of ten property mappings
were correct, showing similar results as the graph where im-
ages were manually chosen. The teleoperated data is shown
in bold in Figure 5 to show that similar trends were achieved.
This shows that, assuming the robots can localize or detect
each other, these mappings could be learned autonomously
once behaviors for following or pointing from our previous
work performed in simulation are applied to the real robots.

4.3 Transfer Learning

We now describe results for the transfer of SVM classi-
fiers in the three conditions. In the simple transfer case
(labeled as “Transfer”), the support vectors learned by one
robot are directly used to classify testing data obtained from
the other robot. This highlights the strength of abstracting
data into properties, as the property memberships will have
similar distributions for objects unlike raw sensory data. To
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Figure 5: This graph shows the number of correctly
mapped properties between the robots as the num-
ber of instances grows.

perform continued learning after receiving classifiers from
another robot, we instead use the support vectors from the
transferred SVM classifier as input instances to a new clas-
sifier. This sometimes lead to an immediate slight perfor-
mance change, usually a slight increase. Subsequently, addi-
tional training instances were added as input to the classifier
(plotted as “Transfer 4+ Learning“). Again, the plots show re-
sults as the number of training instances increases. For the
“Transfer” case, the “# Instances” axis corresponds to the
number of training instances used by the sending robot when
training the classifier that is sent to the receiving robot. For
the “Transfer + Learning” case, the “# Instances” axis refers
to the number of training instances used by the receiving
robot that were added to the support vectors received by
the sending robot.

Figure 7 shows the recall and precision results when com-
paring the first two experimental conditions. The graphs
compare results without transfer (“Own Learning”), transfer
(“Transfer”), and continued learning by the receiving robot
after transfer (“Iransfer + Learning”). As can be seen,
transfer learning results in the bootstrapping of both re-

Table 1: Properties and example objects used to
train them

Property | Objects Incl.

White Whiteboard, Create Robot
Tan Crates

Black Chairl, Case, Trash
Gray Fence, Cabinet

Blue Chair2, Recycling Bin
Texturel Chair2, Black Case
Texture2 Gray Cabinet, Fence
Texture3 Couch

Textured Crates

Round Recycling Bin, Trash
Flat Whiteboard, TV Box
Small Bucket, Cooler

Large Whiteboard, Crate
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Amigobot Properties
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P14

P1 i ,
Pioneer Properties

Figure 6: A gray-scale representation of the prop-
erty mappings, where the rows correspond to prop-
erties of the Amigobot robot and columns corre-
spond to properties of the Pioneer robot. Note that
the latter robot has four more properties, utilizing
its SICK range finder. By taking the maximal values
of each row, eight of ten properties are mapped cor-
rectly (ground truth is the diagonal, highlighted).

call and especially precision. This is true for learning using
properties, but is even more pronounced when learning with
raw values (a more difficult task). This shows that as learn-
ing becomes more difficult, transfer learning becomes even
more useful.

As can be seen from the “Transfer + Learning” curves,
the Amigobot robot could achieve high recall and precision
(74.0 and 73.7, respectively), even without having seen any
instances by itself, compared with low rates after training
by itself with only five instances (e.g. 53.8 and 37.2, respec-
tively). As the receiving robot began to receive additional
training instances, it could combine the received classifier
with these instances and eventually converge towards the
final asymptote. This shows that combining learned knowl-
edge with received knowledge does not pose a problem. The
same trends exist for the Pioneer robot, but are not shown
here due to space limitations.

Our final results consist of the same transfer learning ex-
periments but in the third condition, where the two robots
utilized different underlying representations (HSV versus RGB)
for the color properties. Figure 8 shows these results. As
can be seen, transfer learning when using properties to learn
continued the same trend as before, with significant gains
after transfer even when the receiving robot had not seen
any learning instances itself. When using raw values, how-
ever, transfer learning was completely ineffective and failed
catastrophically. Even when the receiving robot continues
to learn by itself (the “Transfer + Learning” curve), it fails
to achieve high rates until a significant number of training
instances are used. This is likely because it takes many in-
stances to wipe out the detrimental classifier received from
the other robot. In this case, when using raw sensory val-
ues, it would have been better had the Amigobot not re-
ceived anything from the other robot. Transfer when using
properties, however, remained as effective as before.

In this case, the results for the Pioneer robot differed
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Figure 7: Results demonstrating the advantage of transfer learning. Even with no training on instances
obtained by the receiving robot, a high recall (right) and precision (left) rates can be achieved. Learning can
then continue, quickly achieving similar rates as when the robot only learns using its own instances.

slightly and hence are shown as well. For the Pioneer, trans-
fer did not fail as catastrophically as for the Amigobot. How-
ever, the transfer was still considerably less effective, as you
do not see the same high recall and precision rates, for ex-
ample when no instances are seen by the receiving robot. In
all, these results confirm our hypothesis that the abstraction
of data into properties aids transfer, and is especially more
effective than raw values when the robots utilize differing
representations.

S. DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a novel transfer learning
problem that exists in robotics, where robots can be hetero-
geneous with respect to their sensing, perceptual processing,
and representations. In order to alleviate these problems,
we proposed to use an intermediate representation that ab-
stracts raw sensory data. Such abstractions have been long
proposed to improve learning, and in this paper we show that
these abstractions can also facilitate transfer. Using inspira-
tion from a psychologically-derived representation, concep-
tual spaces, we utilize natural object properties as the in-
termediate representation. We have shown empirically that
these can be successfully learned and used in combination to
classify a large number of everyday objects, using real data.

More importantly, we have shown that these properties
can be mapped across heterogeneous robots using instances
from each robot sensing the same scene. This can be done
by manually choosing such images, teleoperation, or (as will
be done for future work) autonomously using following or
pointing behaviors. Once mapped, unshared properties can
be considered missing attributes and the learned classifiers
can be transferred. We have further shown the advantages
of property abstractions by showing that transfer can occur
even when the underlying property representations differ.

Given this foundation, several avenues of future work re-
main. First, there are several obvious improvements that
can be made, many of which have been mentioned earlier.
Namely, the process of achieving a shared context should be
done autonomously, a process that requires either being able
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to detect other robots or shared localization. A more diffi-
cult, but important, challenge is to characterize the amount
of overlap between properties instead of simply considering
them either shared or unshared. Since the properties are
supervised, it will be possible to change the training regime
such that the resulting properties on different robots differ
in their amounts of overlap. It will then be possible to see
what effect this has on transfer learning.

Another important but difficult problem is to allow the
robots to autonomously learn properties in an unsupervised
manner. This would allow the entire framework to be au-
tomated, except for the supervised labels given during the
learning of the object classes themselves. Allowing the robots
to autonomously learn both the intermediate representation
as well as the mappings across robots is the long-term goal
of this work.
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